Quadratic minima and modular forms II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Minima and Modular Forms Ii

Carl Ludwig Siegel showed in [Siegel 1969] (English translation, [Siegel 1980]) that the constant terms of certain level one negative-weight modular forms Th are non-vanishing (“ Satz 2 ”), and that this implies an upper bound on the least positive exponent of a non-zero Fourier coefficient for any level one entire modular form of weight h with a non-zero constant term. Level one theta function...

متن کامل

Quadratic Minima and Modular Forms

1991 Mathematics Subject Classi cation: 11F11, 11E20.

متن کامل

Ja n 19 98 QUADRATIC MINIMA AND MODULAR FORMS

We give upper bounds on the size of the gap between the constant term and the next non-zero Fourier coefficient of an entire modular form of given weight for Γ0(2). Numerical evidence indicates that a sharper bound holds for the weights h ≡ 2 ( mod 4). We derive upper bounds for the minimum positive integer represented by level two even positive-definite quadratic forms. Our data suggest that, ...

متن کامل

m at h . N T ] 1 M ar 1 99 8 QUADRATIC MINIMA AND MODULAR FORMS

We give upper bounds on the size of the gap between the constant term and the next non-zero Fourier coefficient of an entire modular form of given weight for Γ0(2). Numerical evidence indicates that a sharper bound holds for the weights h ≡ 2 ( mod 4). We derive upper bounds for the minimum positive integer represented by level two even positive-definite quadratic forms. Our data suggest that, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2001

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa96-4-8